The size of our solar system, galaxy, and Universe
• The Light Year \(10^{13}\) km as a fundamental distance unit
• Universe is mostly empty space (density = \(10^{-23}\) g/cm³)
• Composition: 75% hydrogen; ~24% helium; < 1% “impurities”
• we are mostly “star stuff” produced in stars and supernovae
• Time scales of the Universe (age ~ 13.6 billion years)

Composition:
75% hydrogen; ~24% helium; < 1% “impurities”

Astronomy as a catalyst for modern Science
• by watching the skies, humankind eventually uncovered the basic laws that govern the motions of the planets, stars, and galaxies
• Using Newton’s laws, we can measure the most fundamental property of things in the Universe - their mass
• Gravity and light are the two ‘messengers’ that astronomers use to learn about the Universe

Occam’s Razor:
William of Occam, 1340(!)
“We take as Truth the simplest explanation that fits all of the data.”
This is the fundamental principle of all modern science

The Early Days...
• Prehistoric Discoveries
 • Motivation: Calendar = survival
 Cosmology = order = higher being
 • Ecliptic + Zodiac paths of planets and Sun
 • Solstice seasons
 • Saros cycle eclipses
• Early Science: The (500 BCE - 150 CE)
 • spherical Earth (Pythagoras)
 • model of celestial motion (Aristotle)
 • relative dimensions of Sun, Moon, Earth (Aristarchus)
Ancient Calendars and Calculators

- Ecliptic / Equinox / Eclipse marker: Stonehenge

- Chichen Itza, Yucatan (Mexico): Annual

Philosophy + some observation culminated in

- Ptolemy’s computational scheme for celestial motion
 - Earth -centered
 - Uniform, circular Motion
 - Epicycles

1200s: Ptolemy’s method off by several degrees
 - response: add more epicycles . . .

1543: Copernicus
 - moved sun to center ----> Revolutionary!

1580: Tycho Brahe
 - precise positions of planets
 - stars are fixed, therefore very distant
 - sky is not immutable

1609: Galileo
 - astronomer: telescopic studies show Copernicus was right
 - physicist: experiments with Gravity
Looping Planets

- **1200s**: Ptolemy's method off by several degrees
 - response: add more epicycles . . .
- **1543**: Copernicus
 - moved sun to center -----> Revolutionary!
- **1580**: Tycho Brahe
 - precise positions of planets
 - stars are fixed, therefore very distant
 - sky is not immutable
- **1609**: Galileo
 - astronomer: telescopic studies show Copernicus was right
 - physicist: experiments with Gravity

Brahe’s Tools and Ideas
Brahe’s Tools and Ideas

- 1200s: Ptolemy’s method off by several degrees
 - response: add more epicycles . . .
- 1543: Copernicus
 - moved sun to center ---> Revolutionary!
- 1580: Tycho Brahe
 - precise positions of planets
 - stars are fixed, therefore very distant
 - sky is not immutable
- 1609: Galileo
 - astronomer: telescopic studies show Copernicus was right
 - physicist: experiments with Gravity

1610 - Johannes Kepler
mathematician and klutz

used Tycho’s data on the motion of Mars:
with no circular motion bias
to discover

Kepler’s Laws
of Planetary Motion

These are simple empirical laws explaining
planetary motion, derived from data only,
with no preconceptions.
Kepler’s Law #1
• Planets orbit the sun in **ELLIPtical** orbits around the sun, with the sun at one ‘focus’ of the ellipse.
 • non-circular motion

Kepler’s Law #2
• A line joining the planet to the Sun sweeps out **equal areas in equal times**... so planet moves faster when closer to the Sun
 • non-uniform motion

Kepler’s 3rd Law

<table>
<thead>
<tr>
<th>Planet</th>
<th>P[y]</th>
<th>a[a.u.]</th>
<th>p^2</th>
<th>a^3</th>
<th>P^2/a^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.241</td>
<td>0.387</td>
<td>0.0581</td>
<td>0.0580</td>
<td>1.0021</td>
</tr>
<tr>
<td>Venus</td>
<td>0.615</td>
<td>0.723</td>
<td>0.3782</td>
<td>0.3779</td>
<td>1.0008</td>
</tr>
<tr>
<td>Earth</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mars</td>
<td>1.881</td>
<td>1.524</td>
<td>3.5382</td>
<td>3.5396</td>
<td>0.9996</td>
</tr>
<tr>
<td>Jupiter</td>
<td>11.86</td>
<td>5.203</td>
<td>140.66</td>
<td>140.85</td>
<td>0.9986</td>
</tr>
<tr>
<td>Saturn</td>
<td>29.42</td>
<td>9.539</td>
<td>865.54</td>
<td>867.98</td>
<td>0.9972</td>
</tr>
<tr>
<td>Uranus</td>
<td>84.01</td>
<td>19.19</td>
<td>7057.7</td>
<td>7066.8</td>
<td>0.9987</td>
</tr>
<tr>
<td>Neptune</td>
<td>164.8</td>
<td>30.06</td>
<td>27159</td>
<td>27162</td>
<td>0.9999</td>
</tr>
</tbody>
</table>

Kepler’s Law #3
• **The Law of Periods:**

\[\text{Period}^2 = (\text{semimajor axis})^3 \]
\[P^2 = a^3 \]

(P in years, a in A.U.)

Bigger orbit (larger a) \rightarrow longer **Period**

1666: **Isaac Newton**

mathematician: Invented calculus as a youth . . .

SYNTHESIZED:

Galileo’s Experiments

Kepler’s Laws

Calculus

into Physical Laws;
the basis of Modern Science

Apple falls \rightarrow Earth and apple attract each other
Moon and Earth attract each other, too

If moon moves sideways as it falls, it could forever circle the Earth...
Newton’s Laws of Motion

- **Newton #1**: (the law of inertia)
 - bodies move at constant velocity unless acted upon by an unbalanced force

- **Newton #2**: (fisma)
 - Force = mass x acceleration \((F=ma)\)

- **Newton #3**: for every force on a body, there is an equal force acting in the opposite direction on another body --- recoil

Newton’s Law of Universal Gravitation

Gravity is

- a **central** force: strength drops with distance\(^2\)
- a **universal** force: same form everywhere
- a **cosmic** force: inherent property of matter

Apple falls -> Earth and apple attract each other
Moon and Earth attract each other, too

If moon moves sideways as it falls, it could forever circle the Earth...

- **Force** of gravity pulls planets towards Sun
 \((\text{Newton’s 2nd law})\)
- without gravity, planets would fly away in straight lines
 \((\text{Newton’s 1st law})\)

Newton’s Derivation of Kepler #3

- Gravitational force pulling planets **toward** sun
 \[
 F_{\text{toward}} = \frac{GMm}{a^2}
 \]
 (Newton’s law of Universal Gravitation)

- centrifugal “force” pulling planets **away** from sun

 \[
 F_{\text{away}} = \frac{mv^2}{a}
 \]

 or, since \(v = \frac{2\pi a}{P}\)

 \[
 F_{\text{away}} = \frac{m4\pi^2a}{P^2}
 \]

- If forces equal, then distance between doesn’t change!

 \[
 \frac{GMm}{a^2} = \frac{m4\pi^2a}{P^2}
 \]

 \[
 P^2 = a^3 \times \left(\frac{4\pi^2}{GM}\right)
 \]

 this is Kepler’s Third Law - with benefits!