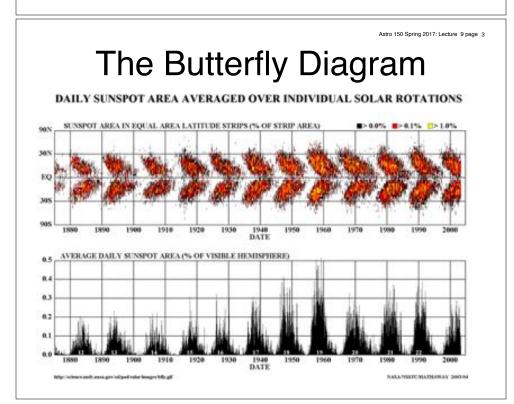
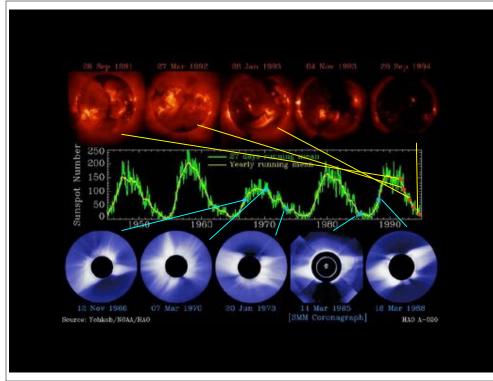
Reading: Chapter 16 (next week: Chapter 17)

Exam 1: This Thursday, February 9 - bring a #2 pencil!
ESSAY. Review Sheet and Practice Exam Posted

Brief review of last time: Our Sun


- Vital Statistics
- The Photosphere the visible surface
 - granulation
 - sunspots
- The Chromsphere
 - prominences
 - flares
- The Corona hot outer atmosphere
- Magnetic fields and the Solar Cycle
 - 11 year sunspot cycle, but 22 year magnetic cycle
 - the butterfly diagram


The Solar Cycle

Astro 150 Spring 2017: Lecture 9 page

- number of spots changes over 11 year cycle
- magnetic polarity (N/S) of spots flips every 11 years
- -> whole pattern repeats every 22 years

Astro 150 Spring 2017: Lecture 9 page

The Inside of the Sun:

- What keeps the Sun shining?
- What keeps the Sun from collapsing?
- Mechanical Structure
 - balance between gravity and gas pressure
- Thermal Structure
 - production, flow, and escape of radiant energy
- Energy Source

inside the sun

Mechanical Structure

Gravity versus Pressure

Astro 150 Spring 2017: Lecture 9 page

- punishment is swift for violation
- Pressure increases with depth

Astro 150 Spring 2017: Lecture 9 page 6

Astro 150 Spring 2017: Lecture 9 page

Thermal Equilibrium

- Energy in = energy out
 - globally: energy produced = energy lost
 - <u>locally</u>: flow in bottom = flow out top

• Heat Transport Processes

1. conduction - direct contact

2. convection

- 1. bulk motion of matter
- 2. occurs when temperature changes rapidly with depth

3. radiation

- · transport by photons
- transparent stuff -- rapid transport
- opaque stuff -- slow transport
- 1 million years for energy to flow out from center!

Astro 150 Spring 2017: Lecture 9 page 12

Energy Source for the Sun

• Combustion?

- 1 kg of coal per square meter per second!
- whole Sun consumed in 10,000 years! . . .nope

Gravitational Contraction?

Kelvin and Helmholtz, 1871

- falling objects acquire energy that can be converted to heat
- slow contraction can provide heat energy to keep the Sunshining
- contraction by 20 meters each year can keep the Sunshining
- K-H contraction can provide energy for

100 million years!

BUT

various evidence shows that the Sun has been shining for at least

4.6 billion years!

Where does this energy come from?

(a hint: $E = m c^2$)

Answer: NUCLEAR FUSION

Relevant Forces

Astro 150 Spring 2017: Lecture 9 page 15

<u>Electromagnetism</u>: repulsive and long-range

- Strong Nuclear Force: attractive but short range
 - binds protons together in nucleus
 - stronger than EM at very small distances

- At 10,000,000 K
 - nuclei move quickly
 - (+) nuclei get very close in collision
 - strong nuclear force can take over
- Nuclei stick together --- FUSION!

Atomic Structure

• Atom = nucleus and electrons (+ charge) (- charge)

nucleus = protons and neutrons

- Chemical element
 - all atoms w/ same number of protons

Element	# protons	#	symbol
Hydrogen	1	0	H •
Helium	2	2	He ₩
Carbon	6	6	С
Oxygen	8	8	0
Iron	26	30	Fe

$4 \text{ H}^1 \longrightarrow \text{He}^4 + \text{photons} + \text{neutrinos}$

- mass of $H^1 = 1.0078 AM$
- mass of $4 \times H^1 = 4.0312 \text{ AMU}$
- BUT: mass of He⁴ = 4.0026 AMU . . .

0.0286 AMU

disappears in p-p chain!

- converted into energy via E=mc²
- 0.7% of H is converted into energy
- E = $0.007 \times c^2$ ergs per gram of H-> He
- $E = 6 \times 10^{18}$ ergs per gram of H -> He

Hans Bethe - Nobel Prize in Physics for work published in 1939

How long can this go on?

 $M_{sun} = 2 \times 10^{33} \text{ grams}$

rate of consumption = 6.4×10^{14} grams/second

the Sun must consume

6.4×10¹⁴ grams of hydrogen every second!

lifetime = $\frac{2 \times 10^{33} \text{ grams}}{6.4 \times 10^{14} \text{ grams/second}} \times 0.1$ $= 3.1 \times 10^{17}$ seconds = 10 billion years!

...but the "solar neutrino 'problem" lurks

- Neutrinos
 - massless particles
 - travel at the speed of light
 - rarely interact with matter
 - produced in center of Sun during fusion
- Experiments to detect solar neutrinos
 - Chemical method: find rare changed atom in big sample

Nobel Prize in

• Ray Davis - 100,000 gallons of C₂Cl₄ in Homestake Mine

Physics SAGE/GALLEX - gallium neutrino detector

- Photodetectors: detect *rare* recoil of affected particles
 - Kamiokande II neutrino flashes in huge water tank
 - Sudbury Neutrino Observatory (SNO) heavy water
- ALL show ~50% of expected neutrino rate! uh oh

