Reading: Chapter 5, section 5.6; Chapter 17, section 17.3 - 17.4
Chapter 18, sections 18.2 & 18.4

OBAFGKM Contest: a better mnemonic for OBAFGKM?
- written (or e-mail) entries due Tuesday, February 27
- judging by an "independent" panel
- prizes!

Last time: **Too small to see, too bright to ignore**
- The surfaces of the stars are too small to fully resolve
- Stellar spectra display a range of features that depend on temperature and composition O B A F G K M
- Spectral line strength depends on temperature and composition
- We measure the distances to the stars through stellar parallax

Today: **Stellar Motions and vital statistics**
- Stars move among one another - in ways we can measure
- Motions provide more clues to stellar distance
- W/distance we can determine luminosity & do a census of the stars
- Luminosity and temperature correlate - the H-R diagram

Trigonometric Parallax

- **distance (parsecs) = 1/parallax (arc seconds)**
 \[
 d = \frac{1}{p}
 \]

- a star with a **parallax** of 1 arc second lies at a distance of 1 parsec (=3.26 light years)

- **example:** α Centaurus: parallax = 0.77 arc seconds
 - \(d \ [\text{pc}] = \frac{1}{0.77} \text{ arc sec} \)
 - = 1.3 pc
 - \(d \ [\text{ly}] = 1.3 \text{ pc} \times 3.26 \text{ ly/pc} \)
 - = 4.2 ly

Limits for Trigonometric Parallax

- **From Earth:**
 - smallest measurable parallax: \(~0.01\) arc sec
 - farthest measurable distance: \(~100\) pc
 - nearest 20,000 stars

- **From space:** the Hipparcos Mission (1989-1993)
 - smallest measurable parallax: \(0.0014\) arc sec
 - farthest distances: 700 pc
 - 120,000 stars out to 700 pc
 - 400,000 fainter stars out to 350 pc

- **In progress:** Gaia (2013-2018)
 - smallest measurable parallax: \(0.000024\) arc sec
 - farthest distance: 40,000 pc
 - brightness, position, distance to 1,000,000,000 stars
Stellar motion

• **Proper Motion:**
 - apparent motion across the sky, in arc sec / year
 - Barnard’s Star: 10.25 arc sec / year
 - tangential velocity \propto PM \times d
 - actual motion across the sky, in km/s
 - $V_{\text{tan}} = 4.74 \text{pc} \times \text{PM } /\text{yr} \times d$

• **Radial Velocity:**
 - actual speed in line-of-sight
 - determined by Doppler shift of spectral lines
 - object moving towards you: “blue shift”
 - object moving away from you: “red shift”

• **Space Velocity:**
 - true motion of star through space
 - combination of radial and tangential velocity
 - main component - reflex Solar motion (?)

Barnard’s Star - the Proper Motion Champion

- **Proper Motions in the Big Dipper**
 - 70,000 years ago
 - Today
 - 70,000 years from now

- **Barnard’s Star - the Proper Motion Champion**
 - 1950
 - 2010

- **http://www.perseus.gr/Astro-Star-Dwarf-Barnard-2010.htm**
The Doppler Shift measures Radial Velocity

Solar Motion w.r.t. the Stars
- Stars appear to move as a result of
 - relative motion of stars themselves and
 - our Sun’s motion in the Galaxy
- Sun’s relative motion: 20 km/sec (towards Hercules)
- On average, closer stars appear to move faster

Secular Parallax: another distance measure
- A. Measure proper motion
- B. Measure radial velocity via Doppler shift
- C. Assume Space Velocity is reflex of mean solar motion
- D. Obtain tangential velocity using C with B
- E. Distance given by proper motion and tangential velocity:
 \[V_{\text{tan}} = \frac{4.74 \text{ pc} \times \text{PM \"yr\" \times d}}{\text{PM}} \]
 - distance \(\propto\) tangential velocity / proper motion

aside: other uses for Doppler Effect
- Stellar Rotation
- Atmospheric motions (convection, turbulence)
- Orbital Motion
A Census of the Stars

• Observed Luminosities
 \[\frac{L_{\text{sun}}}{100,000} > 100,000 \times L_{\text{sun}} \]

• Observed Temperatures
 \[2000K \quad \text{to} \quad 200,000K \]

• Classification
 stars of a given spectral type (= temperature)
 can have vastly different luminosities ranging over factors of several thousand

• Need to classify stars by spectral type and luminosity

1914: The Hertzsprung-Russell Diagram

spectral type as ‘X’; luminosity as ‘Y’

The H-R Diagram: a device to classify stars by spectral type and Luminosity (i.e. T, or color)

• Radius on the H-R Diagram
 \[\frac{L}{L_{\text{sun}}} = \left(\frac{R}{R_{\text{sun}}} \right)^2 \left(\frac{T}{T_{\text{sun}}} \right)^4 \]
 stars at same L: Higher T → smaller R
 stars at same T: Higher L → Bigger R

• biggest stars: upper right-hand corner of H-R Diagram

Radius on the H-R Diagram
Features on the H-R Diagram

- **The Main Sequence**
 - diagonal band
 - 90% of all stars are Main Sequence stars

- **The Giants**
 - upper right
 - high L, low T -> huge size; $100 \, R_{\text{sun}}$ and more!

- **White Dwarfs**
 - lower left
 - low L, ~high T -> tiny size; $0.01 \, R_{\text{sun}}$ and less