Reading: Chapter 18, section 18.4, Chapter 22, Section 22.1-22.3
Chapter 21, through 21.3
OBAFGKM Contest: a better mnemonic for OBAFGKM?
• written (or e-mail) entries due Tuesday, February 27
• judging by an "independent" panel
• prizes!

Last time: Stellar Families, Masses and Luminosities
• H-RD reveals distinct groups - dominated by the Main Sequence
• Masses of stars can be found using binary star systems
• The Main Sequence is a sequence of Mass
• Mass and Luminosity correlate - the M-L relation as a consequence of fundamental physics

Today: Stellar lifetimes - how they evolve and how we know
• M-L relation tells us that massive stars ‘die’ sooner
• Stellar lifetimes are very long. But what happens when they ‘die?’
• Star clusters reveal what happens to stars as they age and die

The Vogt-Russell Theorem (1926):
Properties of ordinary stars are determined uniquely by mass and composition

• Mass+Composition -> position in H-R diagram
• on M.S., star burning hydrogen
• BUT: star is voluntarily changing its composition!
• V-R theorem demands:
 • star must leave M.S. when hydrogen is exhausted
 • so stars must move in the H-R diagram as they age
• “Stellar Evolution”

Life Expectancies for Main Sequence Stars
• available fuel supply \(\propto \) mass
• rate of fuel consumption \(\propto \) luminosity
• rate of consumption \(\times \) lifetime = total fuel consumed
 • so… luminosity \(\times \) lifetime \(\propto \) mass
 or lifetime \(\propto \) mass / luminosity
• combine with luminosity \(\propto \) mass\(^4\) to give
 \[t_{\text{ms}} \propto \frac{1}{M^3} \]
 \[t_{\text{ms}} = 10^{10} \text{ yr} \times (M/M_{\odot})^{-3} \]
• Massive Stars burn out faster

<table>
<thead>
<tr>
<th>Mass (x sun)</th>
<th>Lifetime [yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10 million</td>
</tr>
<tr>
<td>5</td>
<td>80 million</td>
</tr>
<tr>
<td>3</td>
<td>370 million</td>
</tr>
<tr>
<td>2</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>1</td>
<td>10 billion</td>
</tr>
<tr>
<td>0.8</td>
<td>20 billion</td>
</tr>
</tbody>
</table>
How do stars change over time?

- Stars evolve slowly!
 - we see stars as if they are frozen in time

- Stars in the sky have different ages:
 - Which stars are young?
 - Which are old?

- How do they evolve?
 - red giants \rightarrow main sequence?
 - along the main sequence?
 - main sequence \rightarrow white dwarfs?

- Ages needed of a bunch of stars to trace a stellar life cycle

<table>
<thead>
<tr>
<th>Mass (x sun)</th>
<th>Lifetime [yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10 million</td>
</tr>
<tr>
<td>5</td>
<td>80 million</td>
</tr>
<tr>
<td>3</td>
<td>370 million</td>
</tr>
<tr>
<td>2</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>1</td>
<td>10 billion</td>
</tr>
<tr>
<td>0.8</td>
<td>20 billion</td>
</tr>
</tbody>
</table>

Key Objects: Star Clusters

- **Associations**
 - several dozen stars
 - 10-100 pc in diameter
 - lots of massive main sequence stars

- **Open Clusters** (i.e. Hyades, **Pleiades**, M67, ...)
 - 10s of parsecs in diameter
 - 100 - several thousand stars
 - found in Milky Way disk

- **Globular Clusters** (i.e. Omega Cen., **M80**)
 - 10,000 - 100,000+ stars
 - 10 - 50 pc across
 - found in the “halo” of the Milky Way
H-R (C-M) diagram for an Association

Open Clusters

M34

M67

H-R (C-M) diagram for an Open Cluster
Cluster C-M Diagrams

- **Associations**
 - nearly all stars on Main Sequence
 - includes O and B stars

- **Open Clusters**
 - O and B stars are missing from Main Sequence
 - a few red giants

- **Globular Clusters**
 - no main sequence O, B, A, or F stars
 - many red giants and other stars
 - only low-mass stars remain on Main Sequence

H-R (C-M) diagram for a Globular Cluster

H-R (C-M) diagram for an Association
Remember: \[t_{	ext{ms}} = 10^{10} \text{ yr} \times (\frac{M}{M_{\odot}})^{-3} \]

<table>
<thead>
<tr>
<th>Type</th>
<th>Mass (x)</th>
<th>MS Lifetime [yr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>10</td>
<td>10 million</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>370 million</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>10 billion</td>
</tr>
<tr>
<td>K</td>
<td>0.8</td>
<td>20 billion</td>
</tr>
</tbody>
</table>

- **O stars in Associations**
 - younger than 10 million years
- **M.S. A Stars in Open Clusters**
 - older than 10^7 years and younger than 400 million years
 - O, B stars have become red giants
- **M.S. G Stars in Globular Clusters**
 - stars more massive than G stars have become red giants
 - age \sim 10 billion years

As a cluster ages:
- main sequence “peels down”
 - clusters do not change type as they age
- most massive remaining MS star gives age of cluster
Age of oldest clusters:
~12-14 billion years
Is this the age of the Universe?

- With star clusters as our guide, we can:
 - recreate life cycles of stars with different masses
 birth → middle age → old age → death
 - follow several generations of stars
 - trace history of the Universe from its creation to the distant future

What about the end game(s)?

- We now see the ‘main’ lifetime trajectory
 i.e. what stellar adulthood looks like

- How are stars born?
 - What happens before they start burning hydrogen in the core?

- How do stars “die?”
 - What happens when they run out of nuclear fuel?