Reading: Chapter 21, through 21.3; Chapter 22, Sect. 22.4-22.5
HW 5: Web Reading (due in recitation March 7)
OBAFGKM Contest: a better mnemonic for OBAFGKM? entries due Today

Last time: **How stars evolve and how we know**

- M-L relation tells us that massive stars ‘die’ sooner
- Stellar lifetimes are very long. But what happens when they ‘die?’
- Star clusters reveal what happens to stars as they age and die
- After running out of hydrogen, stars become red giants

Today: How stars form

- Clues from observations - planets, young stars, and the ISM in the IR
- Gravity (somehow) overwhelms pressure, causing clouds to collapse
- Young stars shine via gravity, then finally ignite hydrogen
- Pre-main sequence stars are accompanied by disks, forming planets

Formation of Stars

- **Where to begin?**
 - Evidence from our current Solar System
 - Evidence from the Stars
- **First phases: collapse to star plus disk**
 - interstellar cloud – gravity takes over
 - angular momentum – disk formation
- **The Solar Nebula**
 - mass and composition
 - temperature distribution
- **Planet formation**
 - condensation
 - accretion into planetessimals
 - accretion into planets and satellites
Where to begin?

- Evidence from our current Solar System
 - all planetary orbits are
 - counterclockwise
 - nearly circular
 - in the same plane
 - inner planets are rocky
 - outer planets are gas balls

- Evidence from the Stars
 - there are many other solar systems
 - there are many multiple star systems
 - youngest stars are embedded in dust and gas

Stars from by collapse of interstellar gas & dust

- Average Interstellar medium (ISM) conditions:
 - density: a few atoms / cc (air: 10^{18} atoms/cc)
 - temperature ~ 100K
 - composition: 75% hydrogen

- Molecular Clouds: clumps of (ISM)
 - density: up to 10^4 / cc
 - mass: up to 10^6 M$_\text{Sun}$
 - radius ~ 10 - 30 pc
 - temperature ~ 10K
 - composition:
 - dust
 - molecules H$_2$, H$_2$O, CO, NH$_2$CH$_2$COOH (amino acids), C$_2$H$_5$OH (ethanol)...
First phase: collapse of interstellar cloud

- To make stars, a cloud must undergo **Gravitational Collapse**

- How do you initiate the collapse?
 - **increase density** (kick the cloud)
 - cloud collisions
 - stellar wind sweeping
 - nearby supernovae
 - **fragmentation**
 - initial collapse of large cloud ($M > 300$ Msun)
 - density increases
 - smaller fragments begin their own collapse
 - a star cluster?
From Cloud to Star - theory

- **Cloud Cores:**
 - Dense knots within fragments; seeds of protostars

- **The Protostar Phase**
 - initial collapse is fast (< 10^5 yr)
 - core heats up \rightarrow pressure balances gravity
 - slow contraction \rightarrow grav. energy (10^6) yr

- **The Pre-Main Sequence Phase**
 - larger (still) than M.S. stars
 - more luminous than M.S. stars
 - cooler than M.S. stars
 - still too cool for nuclear burning
 - 10^7 yr - core hot enough $>$ H ignition (in pre-Sun)
 - 3×10^7 years - $1 \, M_{\odot}$ star settles onto M.S.
 - more massive stars reach M.S. faster

From Cloud to Star - observation

- **Mostly seen in IR:**
 - loads of dust in surrounding clouds
 - dust opaque to optical wavelengths
 - dust heated to 1000K: “thermal” IR
 - in optical: dark knots against bright background

- **Collapse \rightarrow Spin-up \rightarrow formation of Disk**
 - consequence of angular momentum conservation
 - bipolar flows of gas
 - HST observations of Orion disks, M16 “eggs”
 - β Pictoris

- **T-Tauri Stars**
 - cool stars with irregular brightness
 - blowing away surrounding dust?
 - evidence of surrounding protoplanetary disk
• **Accretion**
 • grains collide and stick \(\rightarrow\) planetessimals
 • planetesimals grow by further collisions
 • gravity holds them together when big enough
 • some planetesimals eventually become very large
 • final sweeping up into present planets

• **Sun “Turns On”**
 • solar wind blows most of remaining gas away
 • planet growth in protoplanetary disk largely ceases

Planet Formation - Accretion

All this took a VERY SHORT time

\[
\text{\textbullet\xspace} \text{less than 100 million years after initial collapse}
\]
HL Tau - a planetary system in formation imaged in sub-mm by ALMA interferometer

Talk at international conference yesterday!

Gallery of Protoplanetary Discs (Radio)

Ojā Panić’s talk: More ALMA results of Herbig Ae/Be stars

Fomalhaut
HST ACS/HRC

Dust ring
Scattered starlight "noise"
Location of Fomalhaut
Coronagraph mask
Fomalhaut b planet

100 AU
13"