Reading: Chapter 28, Section 28.3-28.5; Chapter 29, Section 29.1, 29.2-29.4
Third Exam: Tuesday, May 1 12:00-2:00

Last time: Galaxy Clusters & Superclusters - large scale structure
• Galaxies are mostly found in groups called clusters
• Clusters are further organized into superclusters
• Dark matter is needed to hold clusters together
• The large-scale structure of the visible Universe shows large voids threaded by filamentary superclusters

Today: Cosmology I - The Age of the Universe and the Big Bang
• Cosmology - answering questions about the origin of the Universe and answering them using observations
• Independent measurements all yield an age of the Universe of about 13.5 billion years
• Time began with a hot Big Bang - expansion and cooling until today
• The Big Bang makes several predictions that can be tested

Cosmology: the study of the overall structure and history of the Universe
• We live in an expanding universe
 • How long has it been expanding
 • Will it expand forever?
• We live in a very big universe
 • Is it truly infinite, or is there an “edge”?
 • Are there other Universes?
• What caused the Large Scale Structure?
 • When and how did galaxies first form?
 • When and how did clusters form?
 • What happened before there were galaxies?

These questions are all interrelated!

How Old is the Universe?
• The Oldest Stars
 • use globular cluster stars in the Milky Way
 • find: age ~ 13 billion years

How Old is the Universe?
• The Oldest Stars
 • use globular cluster stars in the Milky Way
 • find: age ~ 13 billion years

• Hubble’s Law (recitation exercise)
 • how long has the Universe taken to reach its current size?
 \[V = H_0 \times d \] (Hubble); \[V = d/t \] (3rd grade)
 • substitute for V:
 \[d/t = H_0 \times d \]
 so \[1/t = H_0 \] ... or \[t = 1/H_0 \]
 • \(t_h < 1/H_0 \)
 • \(t_h < 15 \) billion years \((H_0 = 65) \)
 < 19 billion years \((H_0 = 50) \)
 < 12 billion years \((H_0 = 77) \)
 • \(H_0 \) tells us the expansion age of the Universe
How Old is the Universe?

- The Oldest Stars
 - use globular cluster stars in the Milky Way
 - find: age ~ 13 billion years

- Hubble’s Law (recitation exercise)
 - $t_h < 1/H_0$
 - $t_h < 15$ billion years ($H_0 = 65$)
 - < 19 billion years ($H_0 = 50$)
 - < 12 billion years ($H_0 = 77$)
 - H_0 tells us the expansion age of the Universe

- Conclusions to draw
 - remarkable consistency between two different measures
 - The Universe began to expand 12-19 billion years ago
 - At that time ($t=0$!) all matter was at a single point.

Looking back at time

- more distant galaxies - the universe as it was at earlier times
- we can “see” our Universe’s past by looking at large distances

Looking back through time: our best tool - HST

Assembling Galaxies
Looking back at time
the Universe was hotter in the past

The hot early Universe
energy (radiation) and mass in equilibrium

A (reverse) chronology of the Universe

<table>
<thead>
<tr>
<th>Time (since ‘0’)</th>
<th>T(K)</th>
<th>Density</th>
<th>Size</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{10} yr</td>
<td>3</td>
<td>10^{-30}</td>
<td>1.5×10^{10} ly</td>
<td>our world</td>
</tr>
<tr>
<td>10^6 yr</td>
<td>3000</td>
<td>10^{-21}</td>
<td>1.5×10^6 ly</td>
<td>Hydrogen recomb.</td>
</tr>
<tr>
<td>3 minutes</td>
<td>10^9</td>
<td>100</td>
<td>0.3 ly</td>
<td>deuterium forms</td>
</tr>
<tr>
<td>20 sec.</td>
<td>5×10^9</td>
<td>1000</td>
<td>0.15 ly</td>
<td>electron freeze-out*</td>
</tr>
<tr>
<td>10^{-4} sec.</td>
<td>10^{13}</td>
<td>10^{14}</td>
<td>2 a.u.</td>
<td>proton/neutron freeze-out</td>
</tr>
<tr>
<td>zero</td>
<td>infinity</td>
<td>infinity</td>
<td>zero</td>
<td>The Big Bang</td>
</tr>
</tbody>
</table>

- matter + antimatter ↔ photons
- As T drops, matter freezes out:
 - high T → heavy particles
 - low T → lighter particles

\[E = mc^2 \]
Testing the Big Bang Idea

- **Big Bang Nucleosynthesis**
 - production of light and heavy elements in the early Universe

- **Remnant radiation from primeval fireball**
 - universal background radiation

- **Origin of Cosmic Structures**
 - formation of galaxies and huge superclusters in an expanding Universe

Big Bang Nucleosynthesis

- **Earliest minutes**
 - H, deuterium
 - He3, He4 (after deuterium stable)

- **Expansion and cooling**
 - halts further fusion

- **net Big Bang production**
 - ~ 75% Hydrogen
 - ~ 25% Helium
 - < 0.1% lithium, beryllium, etc.

- **Matches composition of the oldest stars!**