Last time: Cosmology I - The Age of the Universe & the Big Bang
• Cosmology - answering questions about the origin of the Universe and answering them using observations
• Independent measurements all yield an age of the Universe of about 13.5 billion years
• Time began with a hot Big Bang - expansion and cooling until today
• The Big Bang makes several predictions that can be tested

Today: Cosmology II - Testing the Big Bang
• Testing the Big Bang - synthesis of the elements (helium in particular)
• Remnant radiation produces a cosmic microwave background
• Small density fluctuations needed to make galaxy clusters were present in the very early universe
• A very “Inflation” epoch is needed to make the post-Big Bang expanding universe look like what we see today

Remnant radiation from primeval fireball
• prior to \(10^6\) years:
 • \(T > 3,000\)K, all Hydrogen ionized
 • Universe was opaque
• at \(10^6\) years: recombination
 • Hydrogen recombines
 • Universe becomes transparent
• Most distant visible* “thing”
 • is the “fog” of the recombination epoch:
 when the Universe was a 3000 K black body
 * but Red Shifted by a factor of 1000;

The 3 degree background radiation
• 1965: 3 K Background radiation discovered by Penzias and Wilson (Nobel Prize, 1978)
• 1990: Cosmic Background Explorer: “COBE”
 • Precisely a black body (to 1 part in 100,000)
 • Very uniform distribution in space
Is there an “edge” to the Universe?

- **Olbers’ Paradox**
 - assume: infinite Universe
 - assume: uniform distribution of matter (on large scales)
 - consequence: all lines of sight end on a star
 - consequence: whole sky should be as bright as the Sun
 - Dark night sky → Universe has an “edge”

- **The Edge (or Horizon)**
 - back in space = back in time
 - beyond ~14 billion light years → no stars
 - is this a physical edge? No!
 - viewed from anywhere, $R_{\text{univ}} = 14$ billion ly

Testing the Big Bang Idea

- **Big Bang Nucleosynthesis**
 - production of light and heavy elements in the early Universe

- **Remnant radiation from primeval fireball**
 - universal background radiation

- **Origin of Cosmic Structures**
 - formation of galaxies and huge superclusters in an expanding Universe

Structure and the Uniformity Problem

- 2.7 Kelvin in all directions
 - smoothed by rapid expansion
 - smooth Universe today
 - but opposite points in sky can’t communicate ($d > c t$)

- **Superclusters**: organized and old
 - how did they form from a smooth medium
 - how did they form in such large sizes

- for Big Bang to “work”:
 - at early times, all must have been in causal contact
 - followed by later rapid expansion - INFLATION
 - provide some early structure to seed galaxies

- Dramatically confirmed by COBE in 1992 (NOBEL - 2006)
Inflation - a solution to the uniformity problem

- $t \sim 10^{-37}$ sec
 - gravity repulsive
 - brief accelerated expansion
- **before inflation**: all points in space could communicate
- **after inflation**: too distant for further contact

COBE maps of the Microwave background

- COBE–DMR Map of CMB Anisotropy
 - North Galactic Hemisphere
 - $-100 \mu K$ to $+100 \mu K$
 - South Galactic Hemisphere

from COBE to WMAP

- (1992) to (2010)

scale of ‘bumps’ is not uniform...
Testing the Big Bang Idea

- Big Bang Nucleosynthesis
 - production of light and heavy elements in the early Universe

- Remnant radiation from primeval fireball
 - universal background radiation

- Origin of Cosmic Structures
 - formation of galaxies and huge superclusters in an expanding Universe

Will the Universe expand forever... or will it eventually collapse?

- is there enough mass for gravity to stop expansion?
- critical density:
 \[\rho_{\text{crit}} = \frac{3H^2}{8\pi G} \approx 9.1 \times 10^{-30} \text{ g/cc} \times (H/70)^2 \]
- measured density: \(\rho \)
 - recast as \(\Omega_0 = \rho / \rho_{\text{crit}} \)
 - if \(\Omega < 1 \): expansion continues forever: universe is “open”
 - if \(\Omega > 1 \): expansion reverses: universe is “closed”

- Open (infinite) Universe:
 - infinite volume no true edge
- Closed (finite) Universe:
 - finite volume no true edge
- Flat Universe: density = critical density \(\Omega = 1 \)
Three possible geometries

- Flat: $\Omega = 1$
- Closed: $\Omega > 1$
- Open: $\Omega < 1$

Inflation - a solution to the uniformity problem

- $t \sim 10^{-37}$ sec
 - gravity repulsive
 - brief accelerated expansion
- before inflation: all points in space could communicate
- after inflation: too distant for further contact

inflation requires $\Omega_0 = 1$

if true:
 - we live in 1 part of an inflated Universe
 - our Universe is FLAT ($\Omega_0 = 1.000000000...$)

note: from B.B. nucleosynthesis:
 - $\Omega_0 < 0.1$ for “normal” matter
 - so any $\Omega > 0.1$ is in a new, unknown form
Testing Inflation #1: Add up all mass in the Universe

- **count up all mass in galaxies**
 - include massive dark galaxy halos
 - $M_{\text{detected}} \rightarrow \Omega_0 \sim 0.03$

- **include more “dark matter”**
 - galaxy clusters need dark matter to stay together
 - 90% of cluster mass must be dark matter
 - $M_{\text{detected}} \rightarrow \Omega_0 \sim 0.3$

Testing Inflation #2: Hubble law at large distances

- **Expansion was faster at earlier times**
 - closed (higher density) Universe - much faster
 - open (lower density) Universe - not as fast
 - empty (zero density) Universe - same speed always

- **Curvature of Hubble law at large distance**
 - distant = younger = faster than now

Ω_0