Distance as a pivotal quantity

Stellar Motions
- Proper motion and tangential velocity
- Radial Velocity via the Doppler Effect

Proper motion and tangential velocity

Statistical Parallax: motion of the sun for a bigger baseline

Uses of the Doppler Effect

The Hertzsprung-Russell (H-R) Diagram
- Classification tool: luminosity plotted vs. temperature
- Radius on the H-R diagram

H-R Diagram Features:
- The Main Sequence, Red Giants, and White dwarfs
- 90% of stars are on the Main Sequence

Features on the H-R Diagram

Main Sequence stars are the most numerous

BUT

The most prominent stars in our sky are the rare but luminous blue main sequence, giants and supergiants

- Why such variety?
- What makes stars so different from one another?
- What are we missing? MASS!
Measuring Stellar Masses: Binary Stars

- **Kepler’s Third Law** - for binary stars

- **The See Saw Law**

 \[
 \frac{M_1}{M_2} = \frac{d_2}{d_1}
 \]

 sum and ratio of masses allows determination of the individual masses of each star

Types of binary stars

- **Visual**
 - widely separated (10-100 a.u. and more)
 - know \(d_1 + d_2 \), \(d_2/d_1 \), \(P \) (sometimes)

- **Spectroscopic**
 - spectral lines show periodic Doppler shifts
 - too close to see individual stars
 - know \(d_2/d_1 \) (from velocities), \(P \)

- **Eclipsing**
 - brightness variations as stars eclipse one another
 - know \(P \), shapes of stars, light distribution

- **Eclipsing spectroscopic - rare**
 - provide \(d_1 + d_2 \), \(d_2/d_1 \), \(P \) and so masses
 - radii from eclipses and orbital velocities

- **Astrometric**
 - stars that “wiggle”
 - bright star orbiting an unseen companion
 - provides \(d_2 \), \(P \)
Types of binary stars

- **Visual**
 - widely separated (10-100 a.u. and more)
 - know \(d_1 + d_2\), \(d_2/d_1\), \(P\) (sometimes)

- **Spectroscopic**
 - spectral lines show periodic Doppler shifts
 - too close to see individual stars
 - know \(d_2/d_1\) (from velocities), \(P\)

- **Eclipsing**
 - brightness variations as stars eclipse one another
 - know \(P\), shapes of stars, light distribution

- **Eclipsing spectroscopic - rare**
 - provide \(d_1 + d_2\), \(d_2/d_1\), \(P\) and so masses
 - radii from eclipses and orbital velocities

- **Astrometric**
 - stars that “wiggle”
 - bright star orbiting an unseen companion
 - provides \(d_2\), \(P\)
Types of binary stars

- **Visual**
 - widely separated (10-100 a.u. and more)
 - know \(d_1 + d_2, \frac{d_2}{d_1}, P \) (sometimes)

- **Spectroscopic**
 - spectral lines show periodic Doppler shifts
 - too close to see individual stars
 - know \(\frac{d_2}{d_1} \) (from velocities), \(P \)

- **Eclipsing**
 - brightness variations as stars eclipse one another
 - know \(P \), shapes of stars, light distribution

- **Eclipsing spectroscopic - rare**
 - provide \(d_1 + d_2, \frac{d_2}{d_1}, P \) and so masses
 - radii from eclipses and orbital velocities

- **Astrometric**
 - stars that “wiggle”
 - bright star orbiting an unseen companion
 - provides \(d_2 \), \(P \)

- more than 50% of stars are in binary or multiple systems
- BUT only a **few dozen** can be used to measure accurate stellar masses

- **Key Observation:**
 Stars with the same mass have the same spectral type... **on the Main Sequence**

Properties of Main Sequence Stars

<table>
<thead>
<tr>
<th># in Galaxy for each O star</th>
<th>(\frac{L}{L_{\odot}})</th>
<th>(\frac{M}{M_{\odot}})</th>
<th>(\frac{R}{R_{\odot}})</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>260,000</td>
<td>20</td>
<td>10</td>
<td>Rigel</td>
</tr>
<tr>
<td>100,000</td>
<td>60</td>
<td>3</td>
<td>2.5</td>
<td>Vega</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Sun, Capella</td>
</tr>
<tr>
<td>5,000,000</td>
<td>0.06</td>
<td>0.4</td>
<td>0.6</td>
<td>Barnard’s Star</td>
</tr>
</tbody>
</table>

- **Lower mass limit** of Main Sequence: 0.08 \(M_{\odot} \)
 - stars less massive don’t get hot enough to burn hydrogen

- **Upper mass limit:** \(~ 200 M_{\odot} \)
 - if \(M > 100 M_{\odot} \), violently unstable
Main Sequence Extremes

High Mass:
R136a1 at \(\sim 300 M_{\text{sun}} \)

Low Mass:
an ‘L’ Dwarf at \(0.077 M_{\text{sun}} \)

The Mass-Luminosity Relation

\[L \sim M^4 \]

- **Eddington** (1926): \(L \propto M^4 \) for main sequence stars

- Main sequence is a sequence in **MASS** blue stars are more massive than red stars

- The Sun is a M.S. star
 - The Sun burns hydrogen in its core

- all M.S. stars burn hydrogen in their cores
The Vogt-Russell Theorem (1926):
Properties of ordinary stars are determined uniquely by mass and composition

- Mass + Composition -> position in H-R diagram
- on M.S., star burning hydrogen
- **BUT**: star is voluntarily changing its composition!
- V-R theorem demands:
 - star must leave M.S. when hydrogen is exhausted
 - so stars must move in the H-R diagram as they age

- “Stellar Evolution”

Life Expectancies for Main Sequence Stars

- available fuel supply \propto mass
- rate of fuel consumption \propto luminosity
- rate of consumption x lifetime = total fuel consumed
 - so... luminosity x lifetime \propto mass
 - or lifetime \propto mass / luminosity
 - combine with luminosity \propto mass\(^4\) to give
 \[
 t_{\text{ms}} \propto \frac{1}{M^3}
 \]
 \[
 t_{\text{ms}} = 10^{10} \text{ yr} \times \left(\frac{M}{M_{\text{sun}}}\right)^{-3}
 \]
- Massive Stars burn out faster