Consequences of the Equivalence Principle

\[\gamma = \frac{1}{\sqrt{1 - \frac{r_s}{d}}} \quad r_s = \frac{2GM}{c^2} = 3 \text{ km} \left(\frac{M}{M_\odot} \right) \]

- Gravity bends light = warps space-time by factor \(\gamma \)
- time slows down where gravity is strong
 - \(t_{\text{outside}} = t \times \gamma \)
- light gets redshifted moving away from gravity source
 - \(\lambda_{\text{outside}} = \lambda \times \gamma \)
- moving masses create ripples in space-time (gravitational radiation)

Tests of GR:

- Tests of GR:
 - Bending of light by gravity

 - displaced stars near limb of Sun - the 1919 and 1923 solar eclipses
 - Gravitational Lensing

- surface of the Sun: \(d = 2.3 \times 10^5 \) \(r_s \) \(\gamma = 1 + 2.14 \times 10^{-6} \)
- “ of a white dwarf: \(d = 2.3 \times 10^3 \) \(r_s \) \(\gamma = 1 + 2.14 \times 10^{-4} \)
- “ of a neutron star: \(d = 3.3 \) \(r_s \) \(\gamma = 1 + 0.20 \)
- as \(d \to r_s \), \(\gamma \to \infty \)
 - INFINITE time dilation (time stops)
 - INFINITE redshift (wavelength increases to beyond radio)
 - INFINITE space curvature (no escape)
 - a BLACK HOLE
Shapiro Time Delay

- time for light to move along curved path is longer
 - Radar / spacecraft measurements within solar system
 - Binary pulsars

![Graph showing Shapiro time delay vs calendar date](image1)

The Binary Pulsar

Hulse / Taylor 1993 Nobel Prize

- Pulsar (clock!) in a binary
- orbit period = 7h 45m

- neutron star - relatively large γ
 - large Shapiro time delay
 - large perihelion precession rate
 - orbital decay from gravitational radiation
 - (now) 30+ years of data

![Graph showing period change from gravitational radiation](image2)

period change from gravitational radiation produces shift in periastron time

![Graph showing cumulative shift of periastron time](image3)

A binary system of compact massive objects orbiting each other produces Shapiro delay

Consequences of the Equivalence Principle

\[\gamma = \frac{1}{\sqrt{1 - \frac{r_s}{d}}} \quad r_s = \frac{2GM}{c^2} = 3 \text{ km} \left(\frac{M}{M_{\odot}} \right) \]

- surface of the Sun: \(d = 2.3 \times 10^5 \) \(r_s \) \(\gamma = 1 + 2.14 \times 10^{-6} \)
- "of a white dwarf: \(d = 2.3 \times 10^3 \) \(r_s \) \(\gamma = 1 + 2.14 \times 10^{-4} \)
- "of a neutron star: \(d = 3.3 \) \(r_s \) \(\gamma = 1 + 0.20 \)
- as \(d \to r_s \), \(\gamma \to \infty \)
 - INFINITE time dilation (time stops)
 - INFINITE redshift (wavelength increases to beyond radio)
 - INFINITE space curvature (no escape)
 - a BLACK HOLE

the “photon sphere”

- **event horizon:**
 - \(v_{\text{esc}}^2 = c^2 \sim 2GM/r \)
 - escape velocity = \(c \)
- prior to (above) the event horizon:
 - \(v_{\text{orb}}^2 = c^2 \sim GM/r \)
 - orbital velocity = \(c \)
 - \(r_{\text{photon}} = 1.5 \times r_s \)
- at this photon sphere
 - tangential light “orbits”
 - light directed down: spirals into BH
 - light directed upwards: spirals away

Approaching a black hole

- pre-encounter (\(d > 1.5 \) \(r_s \))
 - horizontally directed light curves downwards
 - perceived horizon bends upwards
 - the “bowl effect”
 - look “down” and see a bright ring at the photon sphere (“Einstein ring”)
Approaching a black hole

- pre-encounter ($d > 1.5 \, r_s$)
 - horizontally directed light curves downwards
 - perceived horizon bends upwards
 - the “bowl effect”
 - look “down” and see a bright ring at the photon sphere (“Einstein ring”)

- at the photon sphere
 - bowl effect very pronounced
 - straight ahead you see the back of your head!

- continue down (between P.S. and event horizon)
 - light may escape, depending on direction
 - escape cone (above) narrows on approach to r_s
 - outside of escape cone, view around corners
to a neutron star

- “painted” with map of Earth
- orbit
- land
- look up
- orbit at surface

to an ultracompact star

- “painted” with map of Earth
- orbit
- to photon sphere
- look up @ p.s.
- orbit
- to surface
- survey
- orbit
to an ultracompact star

- “painted” with map of Earth
- orbit
- to photon sphere
- look up @ p.s.
- orbit
- to surface
- survey
- orbit

what lies beneath?

- non-rotating: \(d < r_s \)
 - fall @ speed of light to form a singularity
 - viewed from afar, collapse stops at event horizon

- Cosmic Censorship
 - time stops \(\rightarrow \) loses meaning \(\rightarrow \) is irrelevant!
 - cut off from the rest of the Universe (almost) forever

rotating black holes

“everything” rotates

- rotation “drags” space-time along
- effect is to pull stuff in direction of BH spin
- extended capture region beyond \(r_s \)
 - “frame dragging”

anatomy of a rotating (Kerr) black hole

- static limit
 - forced co-rotation
 - even light is forced to co-rotate w/ BH

- outer horizon
 - frame dragged faster than light
 - swap of time and space
 - singularity in time, not space
 - escape possible depending on initial entry

- inner horizon
 - return to normal time/ space
fast rotation \Rightarrow ring singularity

- nested “Event Horizons” surrounding the ring
- pass through ring to encounter exo-EH
- return to 3+1D Universe with more(!) energy
 - for some trajectories, anyway

Black holes have no hair

- **Black holes have**
 - MASS (but no “surface”)
 - SPIN
 - CHARGE

- **Black holes DO NOT have**
 - antimatter / matter
 - color
 - smell
 - taste
 - texture
 - information
 - “hair”

Perils of visiting a black hole

- **Tidal forces**: differential pull of gravity
 - $F_{\text{grav}} \propto 1/d^2$ so $F_{\text{tide}} \propto 1/d^3$

- normal tides are tiny:
 - lunar tide = pillow on your head / 10^{12}

\[
\frac{\text{stretch}}{\text{weight}} = 10^7 \times \text{height} [m] \times \left[\frac{d}{R_{\text{Sch}}} \right]^3 \times \left[\frac{M}{M_{\odot}} \right]^2
\]

- **Solar mass Black Hole**:
 - stretch = weight @ $d = 3650$ km ($\sim 1200 R_{\text{sch}}$)
 - “$\sim 10 \times$ weight @ $d = 1690$ km ($\sim 560 R_{\text{sch}}$)

- **torn apart**
 - before getting anywhere near event horizon
 - before getting anywhere near NS surface

- **NOTE**: $s/w \propto 1/M$: Bigger $M =$ smaller stretch
 - $S/W = 10 \times R_{\text{Sch}}$ for $M = 13,600 \ M_{\odot}$
 - $S/W = 1 \times R_{\text{Sch}}$ for $M = 43,000 \ M_{\odot}$

- can “easily” visit monster black holes
A visit to a BH
approach EH, send a regular beacon

- **You see**
 - normal time passage
 - accelerating downward
 - narrowing circle of outward visibility
 - blue stars, distorted sky
 - hole above closes as you cross EH
 - all views lead into BH

- **Companion sees**
 - beacon signals further and further apart
 - you falling slower
 - beacon weakens, reddens
 - eventually frozen, reddened (no signals)

Black Holes don’t live forever

- **Heisenberg:**
 \[\Delta E \times \Delta t \geq \text{tiny #} \]

 - \(E = 0 \) in the vacuum?
 - **no!** only sure to \(\Delta E > \frac{\hbar}{\Delta t} \)
 - for very short time, temporary (large) \(E \) possible
 - “vacuum energy”

- **virtual particles**
 - can pop into existence briefly
 - matter / antimatter pairs
 - short life - antimatter particle soon annihilates his twin

Virtual particles near a black hole
energy of a BH includes gravitational potential energy
produce virtual particle pair near (but outside) EH
if \(-E \) enters BH, \(+E \) escapes, BH Mass goes down

- **“Hawking Radiation”**
 \[L = 4\pi R^2 \sigma T^4 \]
 \[= (\Delta mc^2)/t = 4\pi [3\text{km}(M/M_{\odot})]^2 \sigma T^4 \]

 - \(T_{BH,HR} = 2\times 10^{11}K \left(\frac{M}{4\times 10^{14} \text{grams}} \right)^{-1} \)

 - \(t_{evap} = 10^{10} \text{years} \left(\frac{M}{4\times 10^{14} \text{grams}} \right)^3 \)

 - for a solar mass black hole,
 \(T = 4\times 10^{-8} \text{ K} \) and \(t_{evap} = 1.25 \times 10^{66} \text{ years!} \)

Black Hole evaporation
(and mini-black holes)

- **mini-BH as a power source**
 - \(4\times 10^{14}c^2 = 3.6\times 10^{35} \text{ erg} = 1 \text{ L}_\odot \) for 2 minutes!
 - \(L = 4.1 \times 10^{15} \text{ erg/s} \)
 \[= 4.1 \times 10^{38} \text{ W} = 410 \text{ megaW!} \] - a modest power plant!
 - but where do you put it?!!

- **“primordial” mini black holes**
 - \(M < 4 \times 10^{14} \text{ g} \) → would have “popped” by now
 - \(M < 1.9 \times 10^{14} \text{ g} \) → “” “” 10⁹ yr after BB

- **Low mass BH are HOT!**
 - \(M \sim 6.0 \times 10^{14} \text{ g} \) → \(t_{evap} = 30 \text{ Gyr}, T_{HR} = 3 \times 10^{11} \text{K} \)
 - if common could produce a gamma-ray background
 - none seen, so \(M_{\text{LMBH}} < 10^{-9} M_{\text{univ}} \)

- The Krennrich search for evaporating primordial BH